Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/physics_lib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Physics.Math.Code | Telegram Webview: physics_lib/14111 -
Telegram Group & Telegram Channel
CUDA Fortran for Scientists and Engineers.zip
45.8 MB
📘 CUDA Fortran for Scientists and Engineers [2011] Greg Ruetsch, Massimiliano Fatica

This document in intended for scientists and engineers who develop or maintain computer simulations and applications in Fortran, and who would like to harness parallel processing power of graphics processing units (GPUs) to accelerate their code. The goal here is to provide the reader with the fundamentals of GPU programming using CUDA Fortran as well as some typical examples without having the task of developing CUDA Fortran code becoming an end in itself. The CUDA architecture was developed by NVIDIA to allow use of the GPU for general purpose computing without requiring the programmer to have a background in graphics. There are many ways to access the CUDA architecture from a programmer’s perspective, either through C/C++ from CUDA C and Open CL, or through Fortran using PGI’s CUDA Fortran. This document pertains to the latter approach. PGI’s CUDA Fortran should be distinguished from the PGI Accelerator product, which is a directive based approach to using the GPU. CUDA Fortran is simply the Fortran analog to CUDA C. The reader of this book should be familiar with Fortran 90 concepts, such as modules, derived types, and array operations. However, no experience with parallel programming (on the GPU or otherwise) is required. Part of the appeal of parallel programming on GPUs using CUDA is that the programming model is simple and novices can get parallel code up and running very quickly. CUDA is a hybrid programming model, where both GPU and CPU are utilized, so CPU code can be incrementally ported to the GPU. This document is divided into two main sections, the first is a tutorial on CUDA Fortran programming, from the basics of writing CUDA Fortran code to some tips on optimization. The second part of this document is a collection of case studies that demonstrate how the principles in the first section are applied to real-world examples.

📗 CUDA Fortran для инженеров и научных работников [2014] Грегори Рутш, Массимилиано Фатика


Fortran – один из важнейших языков программирования для высокопроизводительных вычислений, для которого было разработано множество популярных пакетов программ для решения вычислительных задач. Корпорация NVIDIA совместно с The Portland Group (PGI) разработали набор расширений к языку Fortran, которые позволяют использовать технологию CUDA на графических картах NVIDIA для ускорения вычислений.

Книга демонстрирует всю мощь и гибкость этого расширенного языка для создания высокопроизводительных вычислений. Не требуя никаких предварительных познаний в области параллельного программирования, авторы скрупулезно, шаг за шагом, раскрывают основы создания высокопроизводительных параллельных приложений, попутно поясняя важные архитектурные детали современного графического процессора – ускорителя вычислений.

Издание предназначено для инженеров, научных работников, программистов, в также будет полезно студентам вузов соответствующих специальностей. #математика #CUDA #GPU #графика #наука #Fortran #моделирование #физика #physics #инженерия #параллельные_вычисления

💡 Physics.Math.Code // @physics_lib



tg-me.com/physics_lib/14111
Create:
Last Update:

📘 CUDA Fortran for Scientists and Engineers [2011] Greg Ruetsch, Massimiliano Fatica

This document in intended for scientists and engineers who develop or maintain computer simulations and applications in Fortran, and who would like to harness parallel processing power of graphics processing units (GPUs) to accelerate their code. The goal here is to provide the reader with the fundamentals of GPU programming using CUDA Fortran as well as some typical examples without having the task of developing CUDA Fortran code becoming an end in itself. The CUDA architecture was developed by NVIDIA to allow use of the GPU for general purpose computing without requiring the programmer to have a background in graphics. There are many ways to access the CUDA architecture from a programmer’s perspective, either through C/C++ from CUDA C and Open CL, or through Fortran using PGI’s CUDA Fortran. This document pertains to the latter approach. PGI’s CUDA Fortran should be distinguished from the PGI Accelerator product, which is a directive based approach to using the GPU. CUDA Fortran is simply the Fortran analog to CUDA C. The reader of this book should be familiar with Fortran 90 concepts, such as modules, derived types, and array operations. However, no experience with parallel programming (on the GPU or otherwise) is required. Part of the appeal of parallel programming on GPUs using CUDA is that the programming model is simple and novices can get parallel code up and running very quickly. CUDA is a hybrid programming model, where both GPU and CPU are utilized, so CPU code can be incrementally ported to the GPU. This document is divided into two main sections, the first is a tutorial on CUDA Fortran programming, from the basics of writing CUDA Fortran code to some tips on optimization. The second part of this document is a collection of case studies that demonstrate how the principles in the first section are applied to real-world examples.

📗 CUDA Fortran для инженеров и научных работников [2014] Грегори Рутш, Массимилиано Фатика


Fortran – один из важнейших языков программирования для высокопроизводительных вычислений, для которого было разработано множество популярных пакетов программ для решения вычислительных задач. Корпорация NVIDIA совместно с The Portland Group (PGI) разработали набор расширений к языку Fortran, которые позволяют использовать технологию CUDA на графических картах NVIDIA для ускорения вычислений.

Книга демонстрирует всю мощь и гибкость этого расширенного языка для создания высокопроизводительных вычислений. Не требуя никаких предварительных познаний в области параллельного программирования, авторы скрупулезно, шаг за шагом, раскрывают основы создания высокопроизводительных параллельных приложений, попутно поясняя важные архитектурные детали современного графического процессора – ускорителя вычислений.

Издание предназначено для инженеров, научных работников, программистов, в также будет полезно студентам вузов соответствующих специальностей. #математика #CUDA #GPU #графика #наука #Fortran #моделирование #физика #physics #инженерия #параллельные_вычисления

💡 Physics.Math.Code // @physics_lib

BY Physics.Math.Code


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/physics_lib/14111

View MORE
Open in Telegram


Physics Math Code Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Physics Math Code from hk


Telegram Physics.Math.Code
FROM USA